Skip to content

Derived Units

Unit Unit symbol Quantity Definition
HERTZ \(\text{Hz}\) frequency \(\text{s}^{-1}\)
NEWTON \(\text{N}\) force; weight \(\text{kg}\frac{\text{m}}{\text{s}^2}\)
PASCAL \(\text{Pa}\) pressure; stress \(\frac{\text{N}}{\text{m}^2}\)
JOULE \(\text{J}\) energy; work; heat \(\text{N}\text{m}\)
WATT \(\text{W}\) power; radiant flux \(\frac{\text{J}}{\text{s}}\)
COULOMB \(\text{C}\) electric charge \(\text{A}\text{s}\)
VOLT \(\text{V}\) electrical potential difference \(\frac{\text{W}}{\text{A}}\)
FARAD \(\text{F}\) capacitance \(\frac{\text{C}}{\text{V}}\)
OHM \(\text{Ω}\) resistance; impedance; reactance \(\frac{\text{V}}{\text{A}}\)
SIEMENS \(\text{S}\) electrical conductance \(\text{Ω}^{-1}\)
WEBER \(\text{Wb}\) magnetic flux \(\text{V}\text{s}\)
TESLA \(\text{T}\) magnetic flux density \(\frac{\text{Wb}}{\text{m}^2}\)
HENRY \(\text{H}\) inductance \(\frac{\text{Wb}}{\text{A}}\)

Additional Units

For convenience, a number of commonly used units that are not directly combinations of SI base units is also included. These constants simplify the specification of properties, that are not given in SI units. However, as the representation of quantities is unique, they do not appear in formatted outputs.

Unit Unit symbol Quantity Definition
ANGSTROM \(\text{Å}\) length \(10^{-10}~\text{m}\)
AMU \(\text{u}\) mass \(1.6605390671738466\times 10^{-27}~\text{kg}\)
AU \(\text{au}\) length \(149597870700~\text{m}\)
BAR \(\text{bar}\) pressure \(10^5~\text{Pa}\)
CALORIE \(\text{cal}\) energy \(4.184~\text{J}\)
DAY \(\text{d}\) time \(86400~\text{s}\)
DEBYE \(\text{De}\) dipole moment \(\sqrt{10^{-19}~\text{JÅ}^3}\)
DEGREES \(^\circ\) angle \(\frac{\pi}{180}~\text{rad}\)
GRAM \(\text{g}\) mass \(10^{-3}~\text{kg}\)
HOUR \(\text{h}\) time \(3600~\text{s}\)
LITER \(\text{l}\) volume \(10^{-3}~\text{m}^3\)
MINUTE \(\text{min}\) time \(60~\text{s}\)
RADIANS \(\text{rad}\) angle

Additional Constants

Constant Name Symbol Value
G Gravitational constant \(G\) \(6.6743\times 10^{-11}~\frac{\text{m}^3}{\text{kg}\cdot\text{s}^2}\)
RGAS Ideal gas constant \(R=N_\text{Av}k_\text{B}\) \(8.31446261815324~\frac{\text{J}}{\text{mol}\cdot\text{K}}\)

Example

1
2
3
4
5
from si_units import RGAS, CALORIE
from si_units import KILO # see prefixes
print(RGAS)
KCAL = KILO * CALORIE
print(KCAL)
8.31446261815324  J/mol/K
4.184 kJ